7 resultados para SEROTYPES

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional wisdom holds that phase variation is a mechanism for immune evasion. However, despite fimbrial phase variation, mice previously exposed to Salmonella typhimurium are protected against a subsequent challenge. We evaluated whether lpf phase variation instead may be a mechanism to evade cross-immunity between Salmonella serotypes. Mice were immunized orally with S. typhimurium aroA mutants either that expressed the lpf operon (phase-on variant) or in which the entire lpf operon had been removed by deletion. During a subsequent challenge with virulent Salmonella enteritidis a selection against lpf phase-on variants was observed in mice previously exposed to S. typhimurium long polar fimbriae. Vaccination with S. typhimurium did not confer protection against challenge with S. enteritidis, presumably because lpf phase-off variants were able to evade cross-immunity. We propose that lpf phase variation is a mechanism to evade cross-immunity between Salmonella serotypes, thereby allowing their coexistence in a host population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human rhinoviruses, the most important etiologic agents of the common cold, are messenger-active single-stranded monocistronic RNA viruses that have evolved a highly complex cascade of proteolytic processing events to control viral gene expression and replication. Most maturation cleavages within the precursor polyprotein are mediated by rhinovirus 3C protease (or its immediate precursor, 3CD), a cysteine protease with a trypsin-like polypeptide fold. High-resolution crystal structures of the enzyme from three viral serotypes have been used for the design and elaboration of 3C protease inhibitors representing different structural and chemical classes. Inhibitors having α,β-unsaturated carbonyl groups combined with peptidyl-binding elements specific for 3C protease undergo a Michael reaction mediated by nucleophilic addition of the enzyme’s catalytic Cys-147, resulting in covalent-bond formation and irreversible inactivation of the viral protease. Direct inhibition of 3C proteolytic activity in virally infected cells treated with these compounds can be inferred from dose-dependent accumulations of viral precursor polyproteins as determined by SDS/PAGE analysis of radiolabeled proteins. Cocrystal-structure-assisted optimization of 3C-protease-directed Michael acceptors has yielded molecules having extremely rapid in vitro inactivation of the viral protease, potent antiviral activity against multiple rhinovirus serotypes and low cellular toxicity. Recently, one compound in this series, AG7088, has entered clinical trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficiency of first-generation adenoviral vectors as gene delivery tools is often limited by the short duration of transgene expression, which can be related to immune responses and to toxic effects of viral proteins. In addition, readministration is usually ineffective unless the animals are immunocompromised or a different adenovirus serotype is used. Recently, adenoviral vectors devoid of all viral coding sequences (helper-dependent or gutless vectors) have been developed to avoid expression of viral proteins. In mice, liver-directed gene transfer with AdSTK109, a helper-dependent adenoviral (Ad) vector containing the human α1-antitrypsin (hAAT) gene, resulted in sustained expression for longer than 10 months with negligible toxicity to the liver. In the present report, we have examined the duration of expression of AdSTK109 in the liver of baboons and compared it to first-generation vectors expressing hAAT. Transgene expression was limited to approximately 3–5 months with the first-generation vectors. In contrast, administration of AdSTK109 resulted in transgene expression for longer than a year in two of three baboons. We have also investigated the feasibility of circumventing the humoral response to the virus by sequential administration of vectors of different serotypes. We found that the ineffectiveness of readministration due to the humoral response to an Ad5 first-generation vector was overcome by use of an Ad2-based vector expressing hAAT. These data suggest that long-term expression of transgenes should be possible by combining the reduced immunogenicity and toxicity of helper-dependent vectors with sequential delivery of vectors of different serotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhinoviruses are a frequent cause of the common cold. A series of antirhinoviral compounds have been developed that bind into a hydrophobic pocket in the viral capsid, stabilizing the capsid and interfering with cell attachment. The structures of a variety of such compounds, complexed with rhinovirus serotypes 14, 16, 1A, and 3, previously have been examined. Three chemically similar compounds, closely related to a drug that is undergoing phase III clinical trials, were chosen to determine the structural impact of the heteroatoms in one of the three rings. The compounds were found to have binding modes that depend on their electronic distribution. In the compound with the lowest efficacy, the terminal ring is displaced by 1 Å and rotated by 180° relative to the structure of the other two. The greater polarity of the terminal ring in one of the three compounds leads to a small displacement of its position relative to the other compounds in the hydrophobic end of the antiviral compound binding pocket to a site where it makes fewer interactions. Its lower efficacy is likely to be the result of the reduced number of interactions. A region of conserved residues has been identified near the entrance to the binding pocket where there is a corresponding conservation of the mode of binding of these compounds to different serotypes. Thus, variations in residues lining the more hydrophobic end of the pocket are primarily responsible for the differences in drug efficacies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolutionary relationships of 46 Shigella strains representing each of the serotypes belonging to the four traditional Shigella species (subgroups), Dysenteriae, Flexneri, Boydii, and Sonnei, were determined by sequencing of eight housekeeping genes in four regions of the chromosome. Analysis revealed a very similar evolutionary pattern for each region. Three clusters of strains were identified, each including strains from different subgroups. Cluster 1 contains the majority of Boydii and Dysenteriae strains (B1–4, B6, B8, B10, B14, and B18; and D3–7, D9, and D11–13) plus Flexneri 6 and 6A. Cluster 2 contains seven Boydii strains (B5, B7, B9, B11, B15, B16, and B17) and Dysenteriae 2. Cluster 3 contains one Boydii strain (B12) and the Flexneri serotypes 1–5 strains. Sonnei and three Dysenteriae strains (D1, D8, and D10) are outside of the three main clusters but, nonetheless, are clearly within Escherichia coli. Boydii 13 was found to be distantly related to E. coli. Shigella strains, like the other pathogenic forms of E. coli, do not have a single evolutionary origin, indicating convergent evolution of Shigella phenotypic properties. We estimate the three main Shigella clusters to have evolved within the last 35,000 to 270,000 years, suggesting that shigellosis was one of the early infectious diseases of humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In cells simultaneously infected with any two of the three reovirus serotypes ST1, ST2, and ST3, up to 15% of the yields are intertypic reassortants that contain all possible combinations of parental genome segments. We have now found that not all genome segments in reassortants are wild type. In reassortants that possess more ST1 than ST3 genome segments, all ST1 genome segments appear to be wild type, but the incoming ST3 genome segments possess mutations that make them more similar to the ST1 genome segments that they replace. In reassortants resulting from crosses of the more distantly related ST3 and ST2 viruses that possess a majority of ST3 genome segments, all incoming ST2 genome segments are wild type, but the ST3 S4 genome segment possesses two mutations, G74 to A and G624 to A, that function as acceptance signals. Recognition of these signals has far-reaching implications for the construction of reoviruses with novel properties and functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A typing method for bacteria was developed and applied to several species, including Escherichia coli and Actinobacillus actinomycetemcomitans. Total genomic DNA was digested with a restriction endonuclease, and fragments were enabled with [alpha-32P]dATP by using the Klenow fragment of DNA polymerase and separated by electrophoresis in 6% polyacrylamide/8 M urea (sequencing gel). Depending on the restriction endonuclease and the bacterium, the method produced approximately 30-50 well-separated fragments in the size range of 100-400 nucleotides. For A. actinomycetemcomitans, all strains had bands in common. Nevertheless, many polymorphisms could be observed, and the 31 strains tested could be classified into 29 distinct types. Furthermore, serotype-specific fragments could be assigned for the three serotypes investigated. The method described is very sensitive, allowing more distinct types to be distinguished than other commonly used typing methods. When the method was applied to 10 other clinically relevant bacterial species, both species-specific bands and strain-specific bands were found. Isolates from different locations of one patient showed indistinguishable patterns. Computer-assisted analysis of the DNA fingerprints allowed the determination of similarity coefficients. It is concluded that genomic fingerprinting by restriction fragment end labeling (RFEL) is a powerful and generally applicable technique to type bacterial species.